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Tyrone All-Flash server platform and Weka Distributed File System is designed to provide a cloud-like
experience, whether you run your applications on-premises or plan to move them to the cloud. Distributed
File System provides a seamless transition to the cloud and back.

Most legacy parallel file systems overlay file management software on top of block storage, creating a layered
architecture that impacts performance. Distributed File System eliminates the traditional block-volume layer
managing underlying storage resources. This integrated architecture does not suffer the limitations of other
shared storage solutions and delivers both scalability and performance effectively.

Figure 4 below provides an overview of the software architecture from the application layer all the way to the
physical persistent media layer. The Distributed File System core components, including the unified
namespace and other functions such as virtual metadata servers (MDSs), execute in user space in a Linux
container (LXC), effectively eliminating time-sharing and other kernel-specific dependencies. The notable
exception is the Virtual File System (VFS) kernel driver, which provides the POSIX filesystem interface to
applications. Using the kernel driver provides significantly higher performance than what can be achieved
using a FUSE user-space driver, and it allows applications that require full POSIX compatibility to run on a
shared storage system.
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The Distributed File System supports all major Linux distributions and leverages virtualization and low-level
Linux container techniques to run its own RTOS (Real-Time Operating System) in user space, alongside the
original Linux kernel. Distributed File System manages its assigned resources (CPU cores, memory regions,
network interface cards, and SSDs) to provide process scheduling, memory management, and to control the
I/O and networking stacks. By not relying on the Linux kernel, Distributed File System minimizes context
switching, resulting in a shorter 10 path and predictable low latencies. It also allows upgrading of the Distrib-
uted File System backend storage services independently of Linux OS and client (front end) upgrades.

Distributed File System functionality running in its RTOS (figure 4) is comprised of the following
software components:

= File Services (Front End)-manages multi-protocol connectivity

= File System Compute and Clustering (Back End)-manages data distribution, data protection, and
file system metadata services

= SSD Drive Agent-transforms the SSD into an efficient networked device

= Management Process-manages events, CLI, statistics, and call-home capability

= Object Connector-read and write to the object store

Distributed File System core software in the RTOS runs inside LXC containers that have the benefit of
improved isolation from other server processes. The software, when deployed, is containerized as microser-
vices: Multiple containers for SMB, NFS, S3, and core may exist per host. By spanning multiple LXC contain-
ers, it enables even greater parallelism and the ability to use more CPU cores and RAM than a single LXC
container. A VES driver enables to support full POSIX semantics and leverages lockless queues for /O to
achieve the best performance while enhancing interoperability. The POSIX file system has the same runtime
semantics as a local Linux file system (e.g, Ext4, XFS, and others), enabling applications that previously could
not run on NFS shared storage because of POSIX locking requirements, MMAP files, performance limitations,
or other reasons. These applications will enjoy massively improved performance compared to the local file
system (figure 14).

Bypassing the kernel means that software stack is not only faster with lower latency, but is also portable
across different bare-metal, VM, containerized, and cloud instance environments.

Resource consumption is often a problem with traditional software-based storage designs because these
solutions either take over the entire server or share common resources with applications. This extra software
overhead introduces latency and steals precious CPU cycles. By comparison, Distributed File System only
uses the resources that are allocated to it inside its LXC containers, which means it can consume as little as
one server core and a small amount of RAM in a shared environment (converged architecture- application
and storage software sharing the same server) or as much as all the resources of the server (a dedicated
appliance). The same software stack is utilized in either case.

File System Design

From the outset, Distributed File System was designed to solve many of the problems inherent with legacy
scale-out NAS solutions. One of the key design considerations was to build a software platform that could
address the requirements of different user groups within an organization at scale, or a multi-tenant environ-
ment. The most popular scale-out NAS file systems support a construct of a single file system and a single
namespace, utilizing directories and quota systems to allocate resources and manage permissions. While this
solution worked at smaller scale, it has made management complex when the number of users and/or direc-
tories scale. Full isolation of user groups requires the creation of new file systems and namespaces, which
then creates islands of physical storage to manage. Additionally, directory scaling is a problem and typically
requires creating multiple directories to maintain performance, further exacerbating the complexity.



As such, Distributed File System differs from other scale-out NAS solutions in that it embraces the concept
of many file systems within the global namespace that share the same physical resources. Each file system
has its own "persona” and can be configured to provide its own snapshot policies, tiering to object store, orga-
nizations, role-based access control (RBAC), quotas and much more. A file system is a logical construct and
unlike other solutions, the file system capacity can be changed on the fly. Clients that are mounted can
observe the change in file system size right away without any need to pause /0. As already mentioned, each
file system has a choice to tier to an object store, and if it is a tiered file system, the ratio of hot (NVMe) tier
and object (HDD) tier can also be changed on the fly. A file system can be split into multiple organizations
managed by their own administrator.

A single file system can support billions of directories and trillions of files, delivering a scalability model more
akin to object stores than NAS systems, and directories scale with no loss in performance. Currently it
supports up to 1024 file systems, and up to 24,000 snapshots in a single cluster.

Distributed File System Limits:

= Up to 6.4 trillion files or directories

= Up to 14 Exabytes managed capacity in the global namespace
= Up to 6.4 billion files in a directory

= Up to 4 petabytes for a single file
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'—\ Supported Protocols Note:

Many non-traditional applications and

Clients with the appropriate credentials and privileges can create, modify, data systems can take advantagolel
and read data using one of the following protocols: the POSIX capabilities thERREI

system provides as it appears as a local
POSIX mount. One example of this is HDFS

NVIDIA® GPUDirect® Storage (G DS)55 (Hadoop Distributed File System); POSIX

connector can directly mount to Hadoop
NFS (Network File System) v3 and v41 nodes to provide very high performance.
SMB .(SGVVGF Message BlOCk) v2and v3 Data written to the file system from one
S3 (Slmp|e Storage SerVICG) protocol can be read via another one, so the

data is fully shareable among applications.

‘\ Integrated Flash and Disk Layers for Hybrid Storage

The Distributed File System storage design consists of two separate layers, an NVMe SSD-based flash layer
that provides high-performance file services to the applications, and an optional S3-compatible object
storage layer that manages the long- term data lake (outlined in Figure 3). The two layers can be physically
separate, but logically serve as one extended namespace to the applications. The Distributed File System
expands the namespace from the NVMe flash layer to the object store, presenting a single global namespace
that scales to exabytes.

The object store can be from any S3-API compliant vendor for either on- premises or public
cloud deployment. It only requires the presence of an S3 bucket, so an existing object store
can be shared with file system for the namespace extension, while still supporting other
applications in separate buckets. As we will see later, file system leverages components of

J r the object store capability to enable cloud bursting, backup to the cloud, DR to another
cluster, or file system cloning.




ﬁ Networking

The system supports the following types of networking technologies:

InfiniBand (IB) HDR and EDR
Ethernet — 10Gbit minimum, 100Gbit and above recommended

The customer’s available networking infrastructure dictates the choice between the two, as solution delivers
comparable performance on either one. For networking, the system does not use standard kernel-based
TCP/IP services, but a proprietary networking stack based on the following:

Use of DPDK to map the network device in the user space and make use of the network device without
any context switches and without copying data between kernels. This bypassing of the kernel stack elimi-
nates the consumption of kernel resources for networking operations and can be scaled to run on multi-
ple hosts. It applies to both backend and client hosts and enables the DISTRIBUTED FILE SYSTEM
system to fully saturate up to multiple 200Gbit Ethernet or InfiniBand links.

Implementation of a proprietary protocol over UDP, ie, the underlying network may involve routing
between subnets or any other networking infrastructure that supports UDP. Clients can be on different
subnets, as long as they are routable to reach the storage nodes.

The use of DPDK delivers operations with high throughput and extremely low latency. Low latency is
achieved by bypassing the kernel and sending and receiving packages directly from the NIC. High through-
put is achieved because multiple cores in the same host can work in parallel, eliminating any common bottle-
neck.

For legacy systems that lack support for SR-IOV (Single Root /O Virtualization) and DPDK, Distributed File
System defaults to the in- kernel processing and UDP as the transport protocol. This mode of operation is
commonly referred to as the 'UDP mode’ and is typically used with older hardware such as the Mellanox CX3
family of NICs.

W) ¢

In addition to being compatible with older platforms, the UDP mode does not dedicate CPU resources, but
will yield CPU resources to other applications. This can be useful when the extra CPU cores are needed for
other purposes.

For RDMA-enabled environments, common in GPU accelerated computing, storage solution supports
RDMA for InfiniBand and Ethernet to supply high performance without the need to dedicate cores to the
front-end processes.

Application clients connect to the storage cluster via Ethernet or InfiniBand connections. The software
supports 10GbE, 25GbE, 40GbE, 50GbE, 100GbE, 200GbE Ethernet networks, and EDR and 200Gb HDR
InfiniBand networks. For the best performance outlined in this document, We recommends using at least
100Gbit network links.

Many enterprise environments have a mixed network topology composed of both Infiniband and Ethernet to
support both high performance computing application clients as well as more traditional enterprise applica-
tion clients. File System allows InfiniBand clients and Ethernet clients to access the same cluster in these
mixed networking environments, allowing all applications to leverage high-performance storage.
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Network High Availability (HA)

Solution supports high availability (HA) networking to ensure continued operation should a network interface\

card (NIC) or network switch fail. HA performs failover and failback for reliability and load balancing on both
interfaces and is operational for both Ethernet and InfiniBand. For HA support, the system must be configured
with no single component representing a single point of failure. Multiple switches are required, and hosts
must have a connection to each switch. HA for clients is achieved through the implementation of two network
interfaces on the same client, Solution also supports the Link Aggregation Control Protocol (LACP) on the
compute clients on Ethernet (modes 1 and 4) for a single dual-ported NIC. Additionally, solution supports
failover of Infiniband to Ethernet within the storage cluster to maintain high availability in case the Infiniband
network fails. This failover does not apply to clients which much be on one type of network or the other.

Solution can easily saturate the bandwidth of a single network interface card (NIC). For higher throughput, it
is possible to leverage multiple NICs. Using a non-LACP approach sets a redundancy that enables the
software to utilize two interfaces for HA and bandwidth, respectively. M )

When working with HA networking, it is useful to hint the - . . .

tem to send data between hosts through the same Note: Unlike RoCE implementations that require -
Sys. © . , , 9 Priority-based Flow Control (PFC) to be configured in
switch rather than using the switch interconnect (ISL). | the switch fabric, File Systern does not require a

The system achieves this through network port labeling, [ lossless network setting to support its NVMe-over-fab-
which also ensures ease of use. This can reduce the rics implementation and can even deliver this level of
overall traffic in the network. low latency performance in public cloud networks
Protocols

Distributed File System supports full multi-protocol and data-sharing capability across a variety of protocols
allowing diverse application types and users to share a single pool of data. Unlike other parallel file systems,
it does not require additional management server infrastructure to deliver this capability.The following list
includes all currently supported protocols:

Full POSIX for local file system support

NVIDIA GPUDirect Storage (GDS) for GPU acceleration

NFS for Linux

SMB for Windows

S3 for Object access

POSIX

The storage client is a standard, POSIX-compliant filesystem driver installed on application servers, that
enables file access to filesystems. Like any other filesystem driver, the client intercepts and executes all
filesystem operations. This enables to provide applications with local filesystem semantics and performance,
while providing a centrally managed, sharable, and resilient storage platform. It provides advanced capability
such as byte-range locks and is tightly integrated with the Linux operating system page cache, covered later
in the caching section.

The POSIX client provides the highest performance for IOPS, bandwidth, and metadata at the lowest latency.

NVIDIA GDS
GPUDirect Storage is a protocol developed by NVIDIA to improve bandwidth and reduce latency between
the server NIC and GPU memory, leveraging RDMA.

NFS

The NFS protocol allows remote systems to access the file system from a Linux client without the client. While
this implementation will not deliver the performance of POSIX client, it provides a simple way to deploy and
share data from the storage cluster. File System currently supports NFS v3, and NFS v4.1,



SMB
The SMB protocol allows remote systems to connect to shared file services from a Windows or macOS client.
The protocol provides a scalable, resilient and distributed implementation of SMB, supporting a broad range
of SMB capabilities including:

User authentication via Active Directory (Native and mixed mode)

POSIX mapping (uid, gid, rid)

UNIX extension

SHA 256 signing

Expanded identifier space

Dynamic crediting

Durable opens for handling disconnects
Symbolic link support

Trusted domains

Encryption u
Guest access

Hidden shares

SMB ACLs

Conversion from Windows to POSIX ACLs

SMB security related share options

Note:
currently supports SMB v2.x

S3
Many Web based applications now support the S3 protocol, however S3 was designed for scalability at the
expense of performance. Applications, such as real-time analytics on loT data can benefit from high perfor-
mance S3 access. Distributed File System has implemented an S3 front-end support on its performance file
system to accelerate S3 storage 1/0O. In particular, Distributed File System delivers huge performance gains
for small file 1/0 accessed via S3. The S3 API on File System supports the following calls:

Buckets (HEAD/GET/PUT/DEL)

Bucket Lifecycle (GET/PUT/DEL)

Bucket Policy (GET/PUT/DEL)

Bucket Tagging (GET/PUT/DEL)

Object (GET/PUT/DEL)

Object Tagging (GET/PUT/DEL)

Object Multiparts (POST Create/Complete, GET/PUT/DEL, GET Parts)

In addition, the S3 implementation supports multiprotocol access, TLS, has full S3 audit logs, and has bucket
level features such as policies, quotas-per-bucket, and Expiry rules for information lifecycle management.

Management GUI

Distributed File System provides three quick and easy ways to manage the file system, either through a
Graphical User Interface (GUI), or a Command Line Interface (CLI), or Representational State Transfer AP
(REST). Reporting, visualization, and overall system management functions are accessible using the REST
API, CLI or the intuitive GUI-driven management console (see Figure 5).

Point-and-click simplicity allows users to rapidly provision new storage; create and expand file systems within
a global namespace, establish tiering policy, data protection, encryption, authentication, permissions, NFS,
SMB and S3 configuration, read-only or read-write snapshots, snapshot-to-objects, and quality of service
policies, as well as monitor overall system health. Detailed event logging provides users the ability to view
system events and status over time or drill down into event details with point-in-time precision via the
time-series graphing function (Figure 6)
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A System Events menu lists the events that have occurred in a storage environment. The GUI is entirely
web-based and self contained, eliminating the need to physically install and maintain any software resources,
and you always have access to the latest management console features.

Command Line Interface (CLI)

All system functions and services can be executed via a CLI command. Most system commands are system
wide and deliver the same result across all cluster nodes. Some commands are executed on specific nodes
such as IP address management.

REST API

All system functions and services can be executed via a web service API, which adheres to the RESTful API
architecture. Similar to the CLI, most RESTful commands are system-wide and deliver the same results on all
cluster nodes. Some commands are executed on specific nodes. The APl is presented via a Swagger interface
for ease of use and examples of API code in multiple programming languages

ﬁ\ Adaptive Caching

Applications, particularly those with small files and lots of metadata calls, benefit greatly from local caches.
The data is available with very low latency, and it reduces the load on the shared network as well as on the
back-end storage itself. The file system provides a unique advanced caching capability, called adaptive cach-
ing, that allows users to fully leverage the performance advantages of Linux data caching (page cache) and
metadata caching (dentry cache) while ensuring full coherency across the shared storage cluster. NFS v3
does not support coherency so utilizing Linux caching can lead to data inconsistency for read cache and
potential data corruption for write cache. It supports leveraging Linux page cache — typically reserved for
direct attached storage (DAS) or file services run over block storage — on a shared networked file system,
while maintaining full data consistency. The intelligent adaptive caching feature will proactively inform any
client, that was an exclusive user of a file (and hence running in local cache mode), that another client now
has access to the data set. Once this flag is set, the client can continue running in local cache mode until the
file is modified by another client. File System will now invalidate the local cache ensuring that both clients are
only accessing the most recent iteration of the data. This ensures the highest performance from local cache
when appropriate and always ensures full coherency on data. This functionality does not require specific
mount options to leverage local page cache as File System dynamically manages caching, making the provi-
sioning of the storage environment very simple to manage with no danger of an administrative error causing
data corruption.

Solution provides the same capability for metadata caching, also known as Linux dentry cache. A client can
leverage local metadata cache for a directory, reducing latency significantly. However, once another client has
access to the same directory, it will ensure that any directory changes from one client will invalidate the
cached metadata for all other clients accessing that directory. The caching capability also includes extended
attributes and access control lists (ACLs).

While some shared file storage vendors allow local caching, no other file system provides the adaptive cach-
ing capability of File System. Caching is typically disabled by default and requires an administrator to change
the mount option. That is because write coherency typically depends on some form of battery backup protec-
tion on the client to ensure data consistency on a committed write. Solution caching implementation will work
out-of-the-box without any administrator intervention as File System does not depend on battery protection
to protect acknowledged writes. As a result, the same software that runs on- premises can be seamlessly
deployed in the public cloud with no software changes. This feature is ideal for use cases such as file "Untar’,
which will run significantly faster as a local process vs. across a shared file system.



Global Namespace and Expansion
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File System manages all data within the system as part of a global namespace and supports two persistent
storage tiers in a single hybrid architecture—NVMe SSD for active data and HDD/Hybrid flash-based object
storage for a data lake.

Expanding the namespace to object store is an optional addition to the global namespace and can be config-
ured with a few clicks from the management console. A file resides on flash while it is active or until it is tiered
off to object storage based on preset or user-defined policies. When a file is tiered to the object store, the
original file is kept on the flash layer until the physical space is required by new data, and hence acts as a
cached file until overwritten. When file data is demoted to the object store tier, the file metadata always
remains locally on the flash tier, so all files are available to applications in the location they were written to,
irrespective of tiering placement, even if the object store bucket was in the public cloud6. As NVMe flash
system capacity is consumed and usage reaches a high watermark, data is dynamically pushed to the object
tier, which means you never have to worry about running out of capacity on the flash tier. This is particularly
useful for write- intensive applications, as no administrator intervention is required. The flash tier and the
object tier can scale independently depending on the required usage capacities.

The global namespace can be sub-divided into 1024 file systems and file system capacity can be expanded
at any time on-the-fly without the need to unmount and mount the file system, simply by allocating more
space to it. By segmenting the namespace, storage capacity can be allocated to individual users, projects,
customers, or any other parameter, yet be easily and centrally managed. Data within a file system is fully
isolated from every other file system to prevent noisy neighbor issues.

Thin Provisioning

File System allows thin provisioning of filesystems within the global namespace. When additional Hosts are
added into the cluster, any capacity that is available can be pooled and accessed as a thin provisioned
resource. This feature is key in allowing both automatic capacity expansion when hosts or drives are added,
but also in managing space if hosts or drives are removed from the cluster. Available capacity remaining after
removal of hosts or drives must be enough to support the amount of data stored in the flash tier for all the
filesystems. This feature also enables seamless integration with EC2 auto scaling groups in AWS, and auto
scaling capabilities in other hyperscalar clouds such as GCP, OCl and Azure.

Non-Disruptive Upgrades

File System has the ability to be upgraded without impacting clients. Because it uses containers and sets of
processes inside these containers as it's OS, it is able to upgrade containers in a rolling process without caus-
ing a remount of the clients. This capability when combined with the resiliency of the data protection schema,
allows for solution to be upgraded on the fly with only a minimum of 1/O pauses during the process. Clients
do not need to be unmounted and remounted during the upgrade process.

Integrated Tiered Data Management

Solution has a built-in, policy-based automated data management feature, that transparently moves data
across storage types according to the data temperature. File System supports moving data from the NVMe
flash storage tier to on-premises or cloud-based object storage (Figure 7). Data movement is set at the per-file
system level and is an optional extension of the NVMe flash tier. For example, to always ensure the highest
performance, users may want to keep certain file systems exclusively on NVMe SSD, while other file systems
implement data
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Figure 7: Integrated Tiering to any S3 or Swift-Compatible Object Store /

movement to object storage for the best cost economics. Metadata is always stored on the flash tier, and a
read-only or read-write snapshot of the entire file system, including its data structures, can be stored on the
object storage tier to protect against a failure on the flash tier. The application clients see all the files in a given
file system in the location they were written, regardless of their tiering status, thus no change in application is
needed to leverage cost-optimized object storage- based solutions.

This integrated capability eliminates the need for additional Hierarchical Storage Management (HSM) or data

tiering software that adds complexity and cost. The by-product of the integrated data management features
is an elastic unified namespace that can scale to the size of your cloud vendor's capacity limits

Data Migration to Distributed File System

The object storage tier is an ideal infrastructure choice for building out a large data warehouse or data lake for
ongoing data analytics and data insights. Distributed File System has the ability to consolidate multiple data
lakes into a single massively scalable data warehouse allowing for a single exascale namespace with high
performance data access and data processing.

Migrating from end-of-life hardware platforms or remote buckets can be challenging for administrators as
data ingest will flood the file system, crushing the performance for any other application running normal 1/0
on the system. Distributed File System allows a mount option direct to the object store, that passes the ingest-
ed data directly to the object store without consuming the flash tier capacity. This allows for a “lazy migration”
of the DISTRIBUTED FILE SYSTEM storage system, while maintaining normal operations for other applica-
tions.

Snapshots and Clones
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Distributed File System supports user-definable snapshots for routine data protection including backup as
well as for cloud data migration and cloud bursting. For example, snapshots can be used to back up files
locally on the flash tier as well as making copies to cloud storage tiers for backup or disaster recovery. Also,
snapshots can be saved to lower-cost cold storage such as public cloud and on-premises object storage. In
addition to point-in-time snapshots, Distributed File System can create full clones of the filesystem (read-only
snapshots that can be converted into writable snapshots) with pointers back to the originating data.




Distributed File System snapshots and clones occur instantaneously and are incremental after the first
instance, which dramatically reduces the time and storage required for protection. Furthermore, system
performance is unaffected by the snapshot process or when writing to a clone. Snapshots can be created
from the GUI, CLI or through a REST API call.

Distributed File System supports:

= Read-only shapshots

« Read/write snapshots

= Delete primary snapshot, keeping all other versions

= Delete any snapshot, keeping previous and later versions
= Convert read-only to read/write snapshots

= Snap-to-object (see next section)

Snapshots are exposed to clients via a /.snapshot directory. If tiering is enabled, snapshotted data will be
moved to the object tier based on the same policies as the active filesystem.

ﬁ\ Snap-to-Object

Once Tiering is enabled in a file system, solution supports a unique feature called Snap-to-Object. This
feature enables the committing of all the data of a specific snapshot, including metadata, to an object store.
Unlike data lifecycle management processes utilizing tiering, this feature involves copying all the contents of
the snapshot, including all files and metadata to an object store. After the first snap-to-object has been com-
pleted, subsequent snapshots are stored in a incremental manner so backup time is limited to just the chang-
es and is very fast. It also supports sending snapshots to a second object store using the Remote Backup
feature. This leverages the incremental nature of snapshots by only sending the changes across the wire to
the destination object store. The object store then only needs to store the incremental capacity of the snap-
shots at any given time instead of the complete capacity of each snapshot that is uploaded.

Snap-to-Object also has an incremental Snapshot Download capability embedded within it. When an initial
snapshot from a source filesystem is restored into a new filesystem by downloading the snapshot from the
object store, further snapshots of that source filesystem can then be incrementally restored into the destina-
tion filesystem. With this technology, any updates to the destination filesystem will be seen by closing the file
or directory and reopening it when using the Distributed File System POSIX client, and by closing the file or
directory, then invalidating any client caching when using other protocols. The clients do not have to unmount
and remount the filesystem to see the changes that have occurred.

The outcome of using the snap-to-object feature is that the object store contains a full copy of the snapshot
of the data, which can be used to restore the data on the original Distributed File System cluster or onto
another Distributed File System cluster. The secondary cluster that mounts the Distributed File System
snap-to-object snapshot does not need to be a mirror of the primary system. In fact, the primary system could
have 20 storage hosts in the cluster, while the second system could have 6 or 10, or 100. Any cluster size will
work. This makes it ideal for cloud bursting. Consequently, the snap-to-object feature is useful for a range of
use cases, as follows:

1. Generic Use Cases (on-premises and cloud)

A) Backup of data to an on-premises or cloud-based object store: If too many hardware compo-
nents in a Distributed File System cluster fail beyond recovery because of a failure of the system
or an external event such as a fire, earthquake, flood, etc, the snapshot saved to the object store
can be used to re-create the same data on another Distributed File System cluster, or re-hydrate
onto the original cluster.



B) Data archival: The periodic creation of data snapshots, followed by uploading the snapshot to an
object store or the cloud to create an archive copy of the data. Distributed File System can also
support “cheaper and deeper” Object store services such as AWS Glacier instant retrieval for this
purpose.

C) Asynchronous mirroring of data: Combining a Distributed File System cluster with a replicated
object store in another data center will create a mirror of the data that can be mounted on a second
Distributed File System cluster.

2. Cloud-Only Use Cases

A) Public Cloud pause and restart: In the various cloud providers, Distributed File System utilizes
compute instances with local SSDs to create a cluster. For bursty project-specific work, users
may want to shut down or hibernate the cluster to save costs. The snapshot can be saved to a
object store and re-hydrated when needed again at a later time.

B) Protection against single availability zone failure: Utilizing the snap-to-object feature allows
users to recover from an availability zone (AZ) failure. Should the first AZ fail, if the Distributed File
System snapshot was replicated to a second AZ via the object store, it can be re-hydrated in
minutes by a Distributed File System cluster in the secondary AZ

3. Hybrid Cloud Use Case

A) Cloud bursting: An on-premises customer can benefit from cloud elasticity by using additional
computational power for short periods. By uploading a snapshot to a cloud based object store,
the file system can be run in the cloud. After running in the cloud, the data can be deleted or
archived and the compute instances shut down.

ﬁ\ Data Protection

Data protection is a critical function of any storage system, and challenges are amplified at scale. Without an
appropriate internal data protection schema, file systems would need to be limited in size to accommodate
the effects of disk or host rebuild time windows and minimize the risk of data exposure. Popular data protec-
tion schemes such as RAID7, internal replication (copies of blocks/files), and erasure coding are a compro-
mise between scalability, protection, capacity, and performance.

With Distributed File System, there is no concept of data or metadata locality, as all data and metadata are
distributed evenly across the storage servers, which improves the scalability, aggregate performance and
resiliency. With the advent of high-speed networks, data locality actually contributes to performance and
reliability issues by creating data hot spots and system scalability issues. By directly managing data place-
ment on the SSD layer, Distributed File System can distribute the data across the storage cluster for optimal
placement based on user-con-
figurable stripe sizes. Distribut-
ed File System uses advanced
algorithms to determine data
layout; the placement of data
perfectly matches the block
sizes used by the underlying
flash memory to improve perfor-
mance and extend SSD service life. Stripe sizes can be set to any value from 4 to 16, while parity can be set
to either +2 or +4. Figure 8 illustrates data placement across SSDs in a 6+2 configuration. The minimum
supported cluster size is 6, which allows for two full virtual spares for a rebuild from a 4+2 configuration. The
bigger the Distributed File System cluster, the bigger the stripe size that it can support, and the greater the
storage efficiency and write performance.

Figure 8: Distributed File System data distribution
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Distributed File System Data Protection Schema

Distributed File System manages protection so data is always safe and accessible:
Configurable data protection levels from 4+2 to 16+4
Patented distributed data protection schema
Configurable failure domains
End-to-end checksums for data integrity
Metadata journaling
Local snapshots and clones
Snapshot-to-object for backup and DR

Distributed File System uses failure domains to define data protection levels. Failure domains are fully config-
urable starting at the server host level, which provides single or multiple SSD level granularity. Data protection
levels are flexible depending on the size and scale of the server cluster—the larger the cluster, the larger the
recommended data stripe size for the best utilization of SSD capacity, improved performance, and higher
resiliency. For granular protection, the data protection level is set at the cluster level and parity can be set to
two or four, meaning that the system can survive up to two or four simultaneous host failures without impact-
ing data availability.

Distributed File System'’s data protection scheme follows the convention of data (N) + parity (2 to 4). The N +
4 data protection level is unique from a cloud storage perspective. Many cloud based storage services use a
triple replication scheme to protect data. Distributed File System’s data protection scheme delivers signifi-
cantly better resiliency than triple replication - which only protects to 2 failures - without the expensive
storage and throughput impact. An N + 2 protection level is sufficient for most production environments,
whether with converged (application and storage sharing the same host) clusters or dedicated appliances. An
N+4 protection level is recommended for clusters with a large number (hundreds) of converged cluster serv-
ers because application failures or lockups can impact server availability.

In addition to core data protection, Distributed File System recommends availability best practices such as
servers with redundant power supplies, multiple NICs and switches for network redundancy, etc.

ﬁ Virtual (hot) Spare

A virtual (hot) spare is reserved capacity so that if a failure domain has failed, the system can undergo a com-
plete rebuild of data, and still maintain the same net capacity. All failure domains always participate in storing
the data, and the virtual spare capacity is evenly spread within all failure domains.

The higher the virtual spare count, the more hardware that is required to obtain the same net capacity. Con-
versely, the higher the hot spare count, the more relaxed the IT maintenance schedule for replacements. The
virtual spare is defined during the cluster formation and can be re-configured at any time. The default number
of virtual spares is one.

Data Distribution

Distributed File System’s utilizes a patented8 distributed data protection coding scheme that increases resil-
iency as the number of the servers in the cluster scale. It delivers the scalability and durability of erasure
coding but without the performance penalty. Unlike legacy hardware and software RAID and other data
protection schemes, Distributed File System's s rebuild time gets faster and more resilient as the system
scales because every server in the cluster participates in the rebuild process.



Distributed File System’s utilizes a patented8 distributed data protection coding scheme that increases resil-
iency as the number of the servers in the cluster scale. It delivers the scalability and durability of erasure
coding but without the performance penalty. Unlike legacy hardware and software RAID and other data
protection schemes, Distributed File System's s rebuild time gets faster and more resilient as the system
scales because every server in the cluster participates in the rebuild process.

Distributed File System equally distributes data and metadata across logical buckets that span failure
domains (FD). A failure domain can be a individual storage server, a rack, or even a data center. In cloud envi-
ronments, Distributed File System can span availability zones (AZ).

Unlike traditional hardware and software data protection schemes, Distributed File System's only places a
single segment of a given data stripe inside any one server (or FD), so in the event of multiple drive failures
within a single server it will still be considered a single failure of the domain. The data distribution mechanism
always stripes across failure domains. The protection level is defined at the FD level. Distributed File System
handles failures at the FD level, so individual or multiple failures within the FD is treated as a single failure.
Data stripes are always spread across different server hosts, racks, or AZs depending on the resiliency
chosen. Distributed File System’s resiliency is user-configurable to define the number of failures to tolerate
within a Distributed File System’s cluster to meet the application workload service level requirements. When
a failure occurs, the system considers the FD a single failure, regardless of how large the domain is defined.
In addition to distributing stripes at the FD level, Distributed File System's also ensures a highly randomized
data placement for improved performance and resiliency. As the cluster size grows the probability of a hard-
ware failure goes up proportionally, but Distributed File System overcomes this issue by distributing the
stripes in a randomized manner. The more servers, the higher the amount of random stripe combinations,
making the probability of a double failure lower. Example: for a stripe size of 18 (16+2) and a cluster size of 20
the number of possible stripe combinations is 190, however as the cluster size grows to 25, the number of
possible stripe combinations is now 480,700, The number of possible stripe combinations is based on the
following formula where C is the number of servers in a cluster, and S is the stripe size: C!/(S*(C-S)!).

Distributed File System Rebuilds

Distributed File System uses several innovative strategies to return the system to a fully protected state as
quickly as possible and be ready to handle a subsequent failure. This ensures that applications are not
impacted by long data rebuild processes.

Distributed File System protects data at the file level, so it only needs to rebuild the data that is actively stored
on the failed server or SSD. This means, that the rebuild times are faster compared to a traditional RAID solu-
tion or file server that protects data at the block layer. RAID controller based systems typically rebuild all
blocks on an affected storage device (SSD/HDD), including empty blocks, prolonging rebuilds and the time
of exposure. Distributed File System only needs to rebuild the specific file data that has been affected by the
failure. When a tiering-to-object policy is in place with a filesystem, a further benefit is that data that has
already been tiered off to the object store is never impacted by a server failure because it is protected on the
object store. In addition, any cached data (data that was tiered to object but still remains on the flash tier until
invalidated) does not need to be rebuilt either, limiting the rebuild priority to data that only resides on the flash
tier.

Distributed File System stripes are comprised of 4k blocks. A stripe is distributed across all available failure
domains. No two blocks belonging to the same stripe will be written to the same failure domain. Therefore,
losing a failure domain results in only losing a single block from a stripe. All the remaining FDs in the cluster
will participate in the rebuilding of any missing blocks in the stripe. Examples of this include singular disk
failures, host failures or entire failure domain failures. Distributed File System will rebuild data from that
drive(s) or FD using a parity calculation and write that data across all remaining healthy FDs,



This means that the larger the cluster size, the faster the rebuild and the more reliable the system becomes
because more compute resources are available to participate in the rebuild process and the stripes become
more randomized across the hosts. In the event of multiple failures, the system prioritizes data rebuilds start-
ing with data stripes that are in the least protected state. Distributed File System looks for data stripes, that
are common to the failed hosts and rebuilds these data stripes first so the system can be returned to the next
level higher of protection as fast as possible. This prioritized rebuild process continues until the system is
returned to full redundancy. By contrast, in a replicated system only the mirrored servers participate in the
recovery process, impacting performance significantly. Erasure coding suffers from a similar problem, where
only a small subset of the servers participates in the recovery. With Distributed File System, the recovery rate
is user-configurable and the amount of network traffic dedicated to rebuild can be changed at any time, so
administrators have complete control to determine the best tradeoff between continued application perfor-
mance and time-to-recovery.

Power-Fail and End-to-End Data Protection

Using a checksum process to ensure data consistency, Distributed File System provides end-to-end data
protection for both reads and writes. Checksums are created on write, and validated on reads. Distributed File
System always stores data and checksum information separately from each other on different physical media
for improved protection.

Distributed File System provides additional data integrity capabilities by protecting against data loss due to
power failures. When a write is acknowledged back to the client, it is safely protected from server failures or
data-center-wide power failure through a journaling process. DISTRIBUTED FILE SYSTEM's innovative data
layout and algorithms enable it to recover from a data-center-wide power failure in minutes because there is
no need to do a complete file system consistency check (FSCK). For most other file systems, the FSCK
process recovery time is proportional to the size of the recovered file system. In large scale deployments, this
recovery can take days or weeks.

Automated Data Rebalancing

Distributed File System proactively monitors and manages the performance, resiliency, and capacity health
status of a Distributed File System cluster. This allows the system to calculate the utilization levels (perfor-
mance and capacity) of hosts to redistribute data automatically and transparently across the cluster to
prevent hot spots.

The benefit is that Distributed File System can maintain well-balanced cluster performance and data protec-
tion as capacity and usage change. Another advantage is that as additional SSDs are added to existing serv-
ers or the cluster is expanded with more servers, Distributed File System automatically rebalances to enhance
performance, resiliency, and capacity without requiring costly downtime for data migration. Matched capacity
SSDs are not required, which allows you to leverage new technology and save money as SSD prices decline.

Container Storage Integration

Container Storage Interface (CSl) is a standard that has been developed to provision and manage shared file
storage for containerized workloads. The Distributed File System CSI Plugin for Kubernetes provides an inter-
face between the logical volumes in a Kubernetes environment (Persistent Volumes (PVs) and the storage,
enabling customers to deploy stateless Distributed File System clients to connect storage to the appropriate
container. The CSl plugin provisions a Kubernetes pod volume either via Persistent Volume (by an administra-
tor) or it can be dynamically provisioned via a Persistent Volume Claim (PVC).



This feature simplifies the process of moving containerized workloads to the cloud or sharing data across
multiple Kubernetes clusters. The CSI plugin also supports using quotas to help manage space consumption
for containerized applications.

Multi-Tenant Organizations

Distributed File System supports the construct of organizations, an element of multi-tenancy that offers
hierarchical access controls. Access can be separated such that data is managed at the organizational level
and only visible to that organizational group’s members. Distributed File System can support up to 64 organi-
zations, and within an organization, logical entities participating in obtaining control of that data are managed
by the Organization Administrator, not the Cluster Administrator. The Cluster Admin can create organizations,
define the Organizational Admin, delete organizations, and monitor capacity usage by the organization file
system.

Capacity Quotas

As noted, there are many ways that Distributed File System manages capacity utilization across organiza-
tions.

Organizational level quotas allow groups to manage their own file systems and capacity. Distributed File
System supports up to 64 organizations.

File system level capacity allows different projects or departments to have their own allocated capacity.
The Distributed File System file system supports up to 1024 file systems on a single storage namespace.
Directory level quotas provide a quota per project directory, useful when there are many projects withing
a single file system. Quotas can be set at an advisory level, as hard quotas or as soft quotas.

Quality of Service

The Distributed File System client also has additional performance management capabilities in the form of
QoS functionality. This is a limiting function where you can set both a preferred throughput, and a maximum
throughput. The client will attempt to limit as close to the value of the preferred performance as possible, but
allow bursting up to the maximum amount if resources are available. This enables per-application perfor-
mance management when accessing Distributed File System. When combined with quotas and organiza-
tional controls, this allows fine-grained resource management within the Distributed File System.

Authentication and Access Control

Distributed File System provides authentication services at the user level and the client-server level to
validate that the user or client has the ability to view and access data. Distributed File System allows different
authenticated mount modes such as read-only, or read-write and is defined at the file system level.
Authenticated mounts are defined on the Organizational level and are encrypted by an encryption key. Only
clients with the proper key are able to access authenticated mount points. This methodology increases secu-
rity by drastically limiting access to certain subsets of an organization and limiting access to clients with the
proper encryption key. Distributed File System supports the following:

- LDAP (Lightweight Directory Access Protocol), a networking protocol that provides directory services across

many different platforms.

- Active Directory, a Microsoft implementation of LDAP, a directory service that can store information about

the network resources. It is primarily used to authenticate users and groups who want to join the cluster.

- Distributed File System also offers Role-Based Access Control (RBAC), delivering different levels of privileges

to users and administrators. Some users can be granted full access rights while others have read-only rights.



Every Distributed File System user has one of the
following defined roles:

Cluster Admin: A user with additional privileges
over regular users. These include the ability to:

Create new users

Delete existing users

Change user passwords

Set user roles

Manage LDAP configurations
Manage organizations

Additionally, the following restrictions are
implemented for Cluster Admin users to avoid
situations where a Cluster Admin loses access to a
Distributed File System cluster:

Cluster Admins cannot delete themselves

Cluster Admins cannot change their role to a

regular user role

Organization Admin: A user who has similar
privileges to cluster admins, except that these
privileges are limited to the organization level. They
can perform the following within their organization:

Create new users

Delete existing users

Change user passwords

Set user roles

Manage the organization LDAP configuration

Furthermore, to avoid situations where an
organization admin loses access to a Distributed File
System cluster, the following restrictions are
implemented for organization admins:
Organizational Admins cannot delete themselves
Organizational Admins cannot change their role
to a regular user role

Regular: A user with read and write privileges. A user
that should only be able to mount filesystems

can log-in to obtain an access token

can change their password

cannot access the Ul or run other CLI/API
command

Read-only: A user with read-only privileges
S3: A user to run S3 commands and APIs. This user

can operate within the limits of the S3 IAM policy
attached to it.

Encryption In-Flight and At-Rest
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Distributed File System provides full end-to-end
encryption from the client all the way to the
object storage solution, making it the most
robust encrypted file system commercially
available. Encryption is set at the file system
level upon creation of the file system, so some
file systems that are deemed critical can be
encrypted while others are not. When files are
encrypted, it means that even if cold blocks
underlying the file are sent to a object store tier,
the data will remain encrypted. Distributed File
System’s encryption solution protects against
physical media theft, low-level firmware hacking
on the SSD, and packet eavesdropping on the
network. File data is encrypted with the FIPS
140-3 Level 1 compliant encryption key
XTS-AES using a 512-bit key length.

Distributed File System has demonstrated that
encrypted file systems have minimal impact on
application performance when using the
Distributed File System client.

Key Rotation and Key Management

.

Distributed File System supports any key man-
agement system (KMS) that is compliant with
KMIP (the Key Management Interoperability
Protocol) 1.2 and above, as well as Hashicorp
Vault proprietary API. Cluster keys are rotated
by the KMS, file system keys can be rotated via
the KMS and re- encrypted with the new KMS
master key, and file keys can be rotated by
copying the file.

File data on the object store is also encrypted.
When uploading a snap-to-object to the object
store, among other file system parameters, the
file system key is included and encrypted with a
special "backup-specific” cluster key that is
available via the KMS and
is used for all snap-to-ob-
ject backups and restores.

When Distributed  File Y %
System pushes a snapshot P —iP®
to an object store, the data o= =

is fully protected and can 6_ _t'>

be authenticated only
through the KMS system.




‘\ Cloud Auto Scaling

For cloud-native applications auto scaling delivers the full flexibility of cloud elasticity by allowing resources
to dynamically grow or shrink based on performance or user demand requirements. Distributed File System
now supports EC2 auto scaling groups in AWS to allow auto scaling up of the cluster for peak demand
periods and auto scaling down when not needed. For Google Cloud Platform (GCP), auto scaling is done via
cloud functions that are triggered by terraform. Oracle Cloud Infrastructure (OCI) and Microsoft Azure use
other custom integrations from Distributed File System for auto scaling capabilities. In addition to this, thin
provisioning of filesystems along with auto scaling allows for available capacity to be automatically increased
in the filesystems when the cluster is expanded, and automatically shrunk as needed when the cluster is
scaled down.

Flexible Deployment Options (On-Premises and Cloud)

Whether your applications run on bare metal for performance, in a virtual or containerized environment for
ease of deployment and resiliency, or entirely in the public cloud for on-demand scalability and elasticity,
Distributed File System is a single, no compromise, storage solution providing the freedom to choose the
environment best suited for your application based on performance, scale, and economics. Distributed File
System clients can support bare metal, virtualized, containerized, and cloud environments (Figure 9).

[
BARE METAL VIRTUALIZED CONTAINERIZED cLOUD

SHARED FILE SYSTEM
ON-PREMISES HYBRID CLOUD PUBLIC CLOUD

Figure 9: Industry-Leading Flexibility to Support Your Operating Environment

Distributed File System provides industry-leading flexibility by supporting an extremely broad array of operat-
ing environments and deployment models. It runs on standard x86-based servers using Ethernet or Infini-
Band network adapters and off-the-shelf NVMe SSDs. Distributed File System Storage can run on bare metal
as well as in approved cloud environments.

Converged

In a converged deployment (Figure 10), Distributed File System is integrated into standard AMD or Intel
x86-based application servers, or public cloud instances. Combining storage and compute resources with
applications and data into a single building block delivers a highly optimized data center solution across a mix
of workloads. This deployment model provides the ability to create integrated application-based solutions
with better economics, by eliminating the need for external storage, reducing hardware footprint and power
while boosting performance, availability, and capacity.

Distributed File System carves out storage resources and only utilizes the resources in its container, with the
remaining resources available to the applications. This deployment model is popular for clusters of GPU serv-
ers which have local NVMe devices.
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Dedicated Storage Server

Distributed File System can be configured as a dedicated storage server (Figure 11) when all the resources of

the system are dedicated to storage services while applications run on a separate compute infrastructure.

This mode is the most popular among customers as it ensures that application disruptions do not impact

storage services.
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Figure 11: Dedicated Storage Server with Separate Compute and Storage Infrastructure /

Native Public Cloud

Distributed File System is available in multiple public cloud hyperscalars including Amazon Web Services
(AWS), Google Cloud Platform (GCP, Oracle Cloud infrastructure (OCI) and Microsoft Azure. Deployment
architecture varies between the different clouds, but in general is very similar to an on-prem deployment: You
choose a server configuration (EC2, OCI Compute Shape, GCP Compute Engine, Etc.), make sure that NVMe
devices are in or attached to the compute resource, assign networking, and build the cluster. Distributed File
System supports both converged and dedicated storage deployment models in the cloud.



For compute- intensive workloads, or to take advantage of GPU-based instances, it is best to use the dedi-
cated storage server mode. If you need additional low-cost, high-capacity storage, Distributed File System
automated tiering to S3-compatible object stores is available.

This includes AWS S3, Google Cloud Storage, Oracle object storage and Azure blob. If you want to burst or
migrate data to the cloud, you can leverage Distributed File System snapshot-to-object functionality for data
movement. For improved resiliency, Distributed File System also supports the spanning of AZs in the public
cloud. Figure 12 shows a typical deployment of Distributed File System in the AWS public cloud. For GCP, OCI
and Azure, it would look similar to this, but with differing terminology for the compute and storage servers.

Performance in the cloud is coupled to the number of NVMe devices in a Distributed File System cluster as
well as network speeds. For best performance, please work with Distributed File System or partner system
engineers to get a sizing recommendation.
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\ Figure 12: Distributed File System in the AWS Public Cloud

Tyrone All-Flash server platform and Weka Distributed File System addresses common IT storage problems
by providing a fast, efficient, and resilient distributed parallel file system that is cloud- native and delivers the
performance of All-Flash Arrays, the simplicity of file storage, and the scalability of the cloud. Part of
Distributed File System’s ease of use and cloud-like experience includes rapid provisioning to reduce time to
get new workloads deployed, along with elasticity scaling, resiliency, performance, and cost-effectiveness.

Distributed File System is a POSIX-compliant high-performance clustered, parallel file system that has been
built from the ground up to run natively on NVMe based storage. It leverages high-performance networking
- either Ethernet or InfiniBand - to fully saturate the network links for maximum performance. It is an ideal
solution for performance-intensive applications that demand high /O and high concurrency to multiple
clients. It is in widespread use across areas such as Life Sciences, Financial Analytics, GPU-based ML, DL
and Al applications, EDA, and HPC applications. It excels in large bandwidth and small I/O-intensive
applications that have relied on parallel file systems for best performance. Distributed File System reduces the
cost and complexity of storage, requiring fewer hardware resources compared to traditional solutions. It also
fully supports legacy protocols such as NFS and SMB and has a rich set of enterprise-class features.



